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LEITER TO THE EDITOR 

An exactly soluble moving-mirror problem 

W R Walker and P C W Davies 
Department of Theoretical Physics, The University, Newcastle-upon-Tyne, NE1 7RU, UK 

Received 28 June 1982 

Abstract. We present for the first time an exact treatment of the production of radiation 
by a mirror which accelerates along a smooth, asymptotically static trajectory in two- 
dimensional Minkowski space. The treatment confirms the general expectations of earlier 
work which was based on questionable approximations and unrealistic asymptotic 
behaviour. 

In the recent spate of investigations of quantum field theory in curved space and 
non-inertial coordinate systems, a useful heuristic device has been the so-called moving 
mirror (Fulling and Davies 1976, Davies and Fulling 1977, see Birrell and Davies 
1982 for a review). In its simplest form, this consists of a perfectly reflecting boundary 
(point) in two-dimensional Minkowski space (f, x)  which moves along some non-trivial 
trajectory 

x = z(f). (1) 

A massless scalar field C$ satisfying the equation 

04=0 (2) 

is constrained to vanish at the 'mirror'. 

frequency 'in' modes of the form 
If the mirror is initially static in some inertial frame, one may define positive- 

(3) 

and an associated vacuum state IOin) in the usual way. The state IOin) is the usual 
no-particle state of ordinary quantum field theory in the presence of a static reflecting 
boundary. A uniformly moving particle detector, for example, will register no particles 
for this state with unit probability. 

Once the mirror starts to move about, however, the vacuum is disturbed and 
particles are created. To the right of the moving mirror the flow of energy is given by 

(TU I-''' sin o x  e-'" 

F ( u )  = ( 2 4 . r r ) - l [ p f " p f  - $ ( p " ) 2 ] / ( p ' ) z  

where 

p ( U ) = 2 T u - U ,  T~ -z (T , )  = U .  

The flux is a function of the retarded time U = f - x  only because the initial conditions 
rule out any incoming radiation. 
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The particle flux is computed from the Bogolubov transformation between modes 

(6) 

where L, =t+x.  
In practice it is very hard to find trajectories z ( t )  for which this Bogolubov 

transformation may be evaluated explicitly. Two cases of interest, however, are the 
asymptotically null trajectories 

(3) and the complicated outgoing modes which have the form 

e e )  (4?r0)-1/2( -1-0 - -iwp(u) 

~ ( t )  = -t -A e-2K* + B, ast-,co, 

z ( t )  = c - (2 + t2)''2, t>0 ,  

where A, B, c and K are positive constants. Both trajectories have to be joined on 
smoothly to the static world line of the mirror in the region t 

Case (7) yields a Planck spectrum (thermal radiation) with a temperature ~/27r, 
but because (7) is valid only for late times, obscure approximations are needed. Case 
(8) yields a Bessel function type spectrum, which is of considerable interest because 
the flux F vanishes for this trajectory. This example therefore illustrates a peculiar 
relationship between 'particles' and energy. However, the need to join smoothly onto 
the static trajectory in the past involves a departure from the form of (8). Alternatively 
the function (8) may be joined in a C' way to z = 0 at t < 0, but there is then a 
S-function pulse in the flux from the mirror at t = 0. Add to these difficulties the fact 
that the asymptotically null trajectories are non-physical, and also bring a crop of 
problems to do with completeness of the field modes on 41' (see Davies and Fulling 
1977), and it is clear how desirable it is to study an exactly soluble model that does 
not involve these dubious features. 

-a. 

We have found such a model. Consider the trajectory 

t = -z -J-A(~-**/~ - 1)1/2 (9) 

where A and B are constants, and A > B (required so that li I < 1). The shape of this 
trajectory is shown in figure 1. The + sign in (9) refers to the upper half of the curve, 
the - sign to the lower half (it is not symmetric about t =O) .  The curve is C" 
everywhere, and so we avoid the 'joining' problems of the previous examples. It is 
also asymptotically static: as t -* fa, the mirror velocity approaches zero at z + --CO. 

The mirror therefore approaches at accelerating speed from the far left, decelerates, 
and then recedes to infinity, with z S 0. 

The energy flux is fourld from (4) and ( 5 )  to be 

(To'(u)) = (B/6?r)(xS +$Bn4 - 2A2x3 - 3BAzx3 - 3A4x -;A4B)/(x2 +2Bx 
(10) 

where 

U = B  ln(x2/A2+1)+x. 

This function is shown in figure 2. 
The integrated energy emitted during the whole motion is 
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Figure 1. ( U )  The mirror trajectory for A = 2, B = 1. ( b )  The mirror trajectory for A =4, 
B = l .  

3.0 

-0.010 

Figure 2. The energy flux, F, from the mirror (A = 2, B = 1). 

Notice that as A + B the integrated energy + 00. This corresponds to the trajectory 
becoming null at one point. Also as B +O the trajectory 'straightens out' and the 
integrated energy + 0. 

The Bogolubov transformation reduces to the integrals (Davies and Fulling 1977) 

where f(x) = U ,  given by (ll), and is the inverse of the function p ( u )  given in (5). 
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The integral may be performed in terms of modified Bessel functions (Gradshteyn 
and Ryzhik 1965) to yield for the Bogolubov coefficients 

The number of particles created in mode w is given by 
m 

n ( w )  = lo IPw,012 dw'. 

We have not been able to evaluate (16) explicitly, but it is easy to verify that it is 
finite. One expects on general grounds that (15) should decline exponentially in both 
w and w ' as these quantities + 00. This is so, as may be deduced from the asymptotic 
properties of the K function. 

These results are shown in figure 3 which is a computer plot of (15) as a function 
of w for fixed ol ,  and also as a function of w 1  for fixed w .  

W W '  

Fipre  3. ( a )  ]@I2 as a function of w for fixed of=  1.0 (A = 2, B = 1). (6) IP1' as a function 
of w '  for fixed w = 1.0 (A = 2, B = 1).  
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